INORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 523-526

Pentaamminenitrocobalt(III) Dichloride and Dibromide at 290 K and 150 K

Elena V. Boldyreva,^a Jussi Kivikoski^b and J. A. K. Howard^b

^aInstitute of Solid State Chemistry, Russian Academy of Sciences, Kutateladze 18, Novosibirsk 128, 630128 Russia, and ^bDepartment of Chemistry, Durham University, Science Laboratories, South Road, DH1 3LE Durham, England. E-mail: elena@solid.nsk.su

(Received 11 October 1996; accepted 13 November 1996)

Abstract

The structures of $[Co(NO_2)(NH_3)_5]Cl_2$ and $[Co(NO_2)-(NH_3)_5]Br_2$ were refined at 290 K and at 150 K. For both compounds the same crystal was used for data collection at different temperatures. The data at 290 K are in good agreement with previously published results [Börtin (1968). Acta Chem. Scand. 22, 2890–2898; Cotton & Edwards (1968). Acta Cryst. B24, 474–477; Kubota & Ohba (1992). Acta Cryst. B48, 627–632]. The structures at 150 K are anisotropically distorted compared with those at 290 K, but the space group and the general structural pattern remain the same.

Comment

A comparative study of the structures of the title compounds at 290 K and 150 K was part of a project studying the anisotropy of structural distortion of cobalt(III) nitroammine complexes induced by various means: cooling, increasing pressure, isomorphous substitution or homogeneous linkage isomerization. The present contribution reports the structural data for the title compounds at 290 K and 150 K, and the details of the

data collection and data refinement procedures. A detailed comparison of the structures, the analysis of the anisotropy of structural distortion on cooling and its comparison with structural strain resulting from an increase in hydrostatic pressure or linkage isomerization is reported elsewhere (Boldyreva, Kivikoski & Howard, 1997).

Fig. 1. A view of the [Co(NO₂)(NH₃)₅]²⁺ cation in [Co(NO₂)(NH₃)₅]-Cl₂ at 150 K showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level for non-H atoms; H atoms are drawn as small circles of arbitrary radii.

Experimental

The title compounds were synthesized from $[Co(CO_3)(NH_3)_5]$ -(NO₃) as described by Mäueler (1981). The crystals were grown at ambient temperature from aqueous solutions.

[Co(NO₂)(NH₃)₅]Cl₂ at 290 K

Crystal data

 $[Co(NO_2)(NH_3)_5]Cl_2$ Mo $K\alpha$ radiation $M_r = 261.01$ $\lambda = 0.71073 \text{ Å}$ Monoclinic Cell parameters from 25 C2/creflections $\theta = 24.695 - 24.995^{\circ}$ a = 10.338(2) Å $\mu = 2.31 \text{ mm}^{-1}$ b = 8.687(2) Å T = 290 Kc = 10.756(2) Å Distorted cuboctahedron $\beta = 95.05(1)^{\circ}$ $V = 962.2(3) \text{ Å}^3$ $0.5 \times 0.45 \times 0.4$ mm Z = 4Ruby $D_{\rm x} = 1.802 {\rm Mg} {\rm m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-6S four-circle diffractometer $\omega/2\theta$ scans Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{min} = 0.391, T_{max} = 0.538$ 2469 measured reflections 1163 independent reflections

1074 reflections with $I > 2\sigma(I)$ $R_{int} = 0.02$ $\theta_{max} = 27.97^{\circ}$ $h = -14 \rightarrow 14$ $k = 0 \rightarrow 11$ $l = -14 \rightarrow 14$ 3 standard reflections every 150 reflections intensity decay: none

Refinement

-			
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.005$	Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.018$	$\Delta \rho_{\rm max} = 0.223 \ {\rm e} \ {\rm \AA}^{-3}$	$R[F^2 > 2\sigma(F^2)] = 0.015$	$\Delta \rho_{\rm max} = 0.251 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.048$	$\Delta \rho_{\rm min} = -0.264 \ {\rm e} \ {\rm \AA}^{-3}$	$wR(F^2) = 0.038$	$\Delta ho_{ m min}$ = -0.286 e Å ⁻³
S = 0.984	Extinction correction:	S = 1.106	Extinction correction:
1163 reflections	SHELXL93 (Sheldrick,	1152 reflections	SHELXL93 (Sheldrick,
59 parameters	1993)	59 parameters	1993)
All H-atom parameters	Extinction coefficient:	All H-atom parameters	Extinction coefficient:
refined	0.0635 (17)	refined	0.0579 (12)
$w = 1/[\sigma^2(F_o^2) + (0.0220P)^2]$	Scattering factors from	$w = 1/[\sigma^2(F_o^2) + (0.0126P)^2]$	Scattering factors from
+ 0.8015P]	International Tables for	+ 0.6359 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)	where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

isotropic displacement parameters $(Å^2)$ for [Co(NO₂)(NH₃)₅]Cl₂ at 290 K

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eo}	
Col	0	0.28552 (3)	1/4	0.01892 (11)	Col
C11	0.20751 (4)	0.01613 (5)	0.01368 (3)	0.03235 (12)	Cll
N3	0.01826 (14)	0.2880 (2)	0.43265 (11)	0.0302 (3)	01
N4	0	0.5071 (2)	1/4	0.0247 (3)	N3
N2	0.18915 (13)	0.2874 (2)	0.24672(14)	0.0340 (3)	N4
N1	0	0.0566 (2)	1/4	0.0351 (4)	N2
01	-0.07315 (13)	0.57829 (15)	0.31376(12)	0.0429 (3)	N1

Table 2. Selected geometric parameters (Å, °) for $[Co(NO_2)(NH_3)_5]Cl_2$ at 290 K

Co1—N4	1.925 (2)	Col-Nl	1.989 (2)
Co1—N3	1.9571 (12)	N401	1.2312 (15)
Co1—N2 ⁱ	1.9590 (14)		
01—N4—O1 ⁱ	119.7 (2)	O1-N4-Co1	120.15 (9)
Symmetry code: (i	$(-x, y, \frac{1}{2} - z)$		

[Co(NO₂)(NH₃)₅]Cl₂ at 150 K

Crystal data

 $[Co(NO_2)(NH_3)_5]Cl_2$ $M_r = 261.01$ $\lambda = 0.71073 \text{ Å}$ Monoclinic C2/creflections a = 10.215 (3) Å b = 8.697 (4) Å $\mu = 2.34 \text{ mm}^{-1}$ T = 150 Kc = 10.748 (3) Å $\beta = 95.41 (2)^{\circ}$ V = 950.7 (6) Å³ Z = 4Ruby $D_x = 1.824 \text{ Mg m}^{-3}$ D_m not measured Data collection Rigaku AFC-6S four-circle diffractometer $I > 2\sigma(I)$ $\omega/2\theta$ scans $R_{\rm int} = 0.02$ Absorption correction: $\theta_{\rm max} = 28.00^{\circ}$ $h = -13 \rightarrow 13$ analytical (de Meulenaer

& Tompa, 1965)	k
$T_{\rm min} = 0.387, T_{\rm max} = 0.534$	1
2446 measured reflections	3
1152 independent reflections	

Refinement

S = 1.106	Extinction correction:
1152 reflections	SHELXL93 (Sheldrick,
59 parameters	1993)
All H-atom parameters	Extinction coefficient:
refined	0.0579 (12)
$w = 1/[\sigma^2(F_o^2) + (0.0126P)^2]$	Scattering factors from
+ 0.6359 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C

Table 1. Fractional atomic coordinates and equivalent Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[Co(NO_2)(NH_3)_5]Cl_2$ at 150 K

$U_{\text{eq}} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	v	z	U_{eq}
0	0.28784 (2)	1/4	0.01144 (9)
0.20713 (3)	0.01902 (3)	0.01504 (3)	0.01878 (9)
-0.07355 (10)	0.57980(11)	0.31472 (9)	0.0250(2)
0.02304 (11)	0.28945 (12)	0.43304 (9)	0.0178 (2)
0	0.5085 (2)	1/4	0.0155 (3)
-0.19115 (11)	0.29091 (13)	0.25606 (11)	0.0208 (2)
0	0.0596 (2)	1/4	0.0236 (3)

Table 4. Selected geometric parameters (Å, °) for $[Co(NO_2)(NH_3)_5]Cl_2$ at 150 K

Col-N4 1.919 (2) Co1-N1 1.985(2) Co1-N3 1.9592 (11) 01-N4 1.2376 (12) Col-N2 1.9600 (12) 01-N4-01i O1-N4-Co1 120.08 (8) 119.8 (2) Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

[Co(NO₂)(NH₃)₅]Br₂ at 290 K

Crystal data Mo $K\alpha$ radiation $[Co(NO_2)(NH_3)_5]Br_2$ Mo $K\alpha$ radiation $M_r = 349.93$ $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 Monoclinic Cell parameters from 25 C2/creflections $\theta = 21.145 - 23.925^{\circ}$ $\theta = 24.775 - 24.99^{\circ}$ a = 10.680 (3) Å $\mu = 9.36 \text{ mm}^{-1}$ b = 8.838 (4) Å T = 290 Kc = 10.990 (3) Å Distorted cuboctahedron Distorted cuboctahedron $\beta = 94.70 (2)^{\circ}$ $0.5\,\times\,0.45\,\times\,0.4$ mm $0.5\,\times\,0.45\,\times\,0.4$ mm V = 1033.9 (6) Å³ Ruby Z = 4 $D_x = 2.248 \text{ Mg m}^{-3}$ D_m not measured Data collection 1077 reflections with Rigaku AFC-6S four-circle 981 reflections with diffractometer $I > 2\sigma(I)$ $R_{\rm int} = 0.02$ $\omega/2\theta$ scans Absorption correction: $\theta_{\rm max} = 28.02^{\circ}$ analytical (de Meulenaer $h = -14 \rightarrow 14$ $k = 0 \rightarrow 12$ $k = 0 \rightarrow 11$ & Tompa, 1965) $T_{\rm min} = 0.045, T_{\rm max} = 0.120$ $l = -15 \rightarrow 15$ $= -14 \rightarrow 14$ standard reflections 2648 measured reflections 3 standard reflections 1249 independent reflections every 150 reflections every 150 reflections intensity decay: none intensity decay: none

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
$R[F^2 > 2\sigma(F^2)] = 0.021$	$\Delta \rho_{\rm max} = 0.375 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.052$	$\Delta \rho_{\rm min} = -0.454 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.036	Extinction correction:
1249 reflections	SHELXL93 (Sheldrick,
59 parameters	1993)
All H-atom parameters refined	Extinction coefficient: 0.0095 (4)
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0229P)^{2} + 0.0603P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	Scattering factors from International Tables for Crystallography (Vol. C)

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for $[Co(NO_2)(NH_3)_5]Br_2 \text{ at } 290 \text{ K}$

U	'eq =	(1/3)	$\Sigma_i 2$	$\Box_j U^y$	'a¦a	;*ai.a	j۰
---	-------	-------	--------------	--------------	------	--------	----

	x	у	z	U_{eq}
Col	0	0.28837 (5)	1/4	0.02081 (14)
Brl	0.20769 (3)	0.01538 (3)	0.01036 (3)	0.03177 (11)
N4	0	0.5067 (4)	1/4	0.0271 (7)
N3	0.0134 (2)	0.2930 (3)	0.4295 (2)	0.0299 (5)
N2	0.1841 (2)	0.2880 (3)	0.2501 (2)	0.0318 (5)
01	-0.0715 (2)	0.5759 (3)	0.3125 (2)	0.0490 (6)
N1	0	0.0632 (4)	1/4	0.0323 (8)

Table 6. Selected geometric parameters (Å, °) for $[Co(NO_2)(NH_3)_5]Br_2$ at 290 K

Col—N4	1.930 (3)	Col-N1	1,990 (4)
Co1—N2	1.966 (2)	N4-O1 ⁱ	1.231 (3)
Co1N3 ⁱ	1.967 (2)		,
01 ⁱ —N4—01	120.4 (3)	01-N4-Co1	119.8 (2)
Symmetry code: (i) -	$-x, y, \frac{1}{2}-z.$		

[Co(NO₂)(NH₃)₅]Br₂ at 150 K

Crystal data

$[Co(NO_2)(NH_3)_5]Br_2$	Mo $K\alpha$ radiation
$M_r = 349.93$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/c	reflections
a = 10.575 (2) Å	$\theta = 23.99 - 24.9^{\circ}$
b = 8.815 (5) Å	$\mu = 9.50 \text{ mm}^{-1}$
c = 10.970 (2) Å	T = 150 K
$\beta = 94.97 (2)^{\circ}$	Distorted cuboctahedron
V = 1018.8 (6) Å ³	$0.5 \times 0.45 \times 0.4$ mm
Z = 4	Ruby
$D_r = 2.282 \text{ Mg m}^{-3}$	•
D_m not measured	
Data collection	

Rigaku AFC-6S four-circle	103
diffractometer	1
$\omega/2\theta$ scans	Rint
Absorption correction:	θ_{ma}
analytical (de Meulenaer	h =
& Tompa, 1965)	<i>k</i> =
$T_{\rm min} = 0.044, T_{\rm max} = 0.118$	<i>l</i> =
2605 measured reflections	3 s
1230 independent reflections	e
-	

34 reflections with $> 2\sigma(I)$ = 0.02 $x = 28.01^{\circ}$ $-14 \rightarrow 14$ $0 \rightarrow 12$ $-14 \rightarrow 14$ tandard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.019$	$\Delta \rho_{\rm max} = 0.522 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.049$	$\Delta \rho_{\rm min} = -0.393 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.100	Extinction correction:
1230 reflections	SHELXL93 (Sheldrick,
59 parameters	1993)
All H-atom parameters	Extinction coefficient:
refined	0.0075 (3)
$w = 1/[\sigma^2(F_o^2) + (0.0188P)^2]$	Scattering factors from
+ 0.6873 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

Table 7. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[Co(NO_2)(NH_3)_5]Br_2 at 150 K$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	Z	U_{eq}
Col	0	0.29000 (5)	1/4	0.01327 (12)
Brl	0.20719 (2)	0.01728 (3)	0.01109(2)	0.01923 (10)
N4	0	0.5084 (3)	1/4	0.0181 (6)
N3	0.0154 (2)	0.2948 (2)	0.4299 (2)	0.0194 (4)
01	-0.0727 (2)	0.5786 (2)	0.3126(2)	0.0298 (5)
N2	0.1852 (2)	0.2894 (3)	0.2484 (2)	0.0214 (5)
N1	0	0.0643 (4)	1/4	0.0218 (7)

Table 8. Selected geometric parameters (Å, °) for $[Co(NO_2)(NH_3)_5]Br_2$ at 150 K

Co1-N4	1.925 (3)	Col-NI	1.990 (3)
Co1—N2	1.960 (2)	N4-01	1.240 (2)
Co1-N3	1.966 (2)		
O1 ⁱ —N4—O1	120.1 (3)	Ol ⁱ —N4—Col	120.0 (2)
Symmetry code: (i) _ r v _ 7		

Symmetry code: (i) $-x, y, \frac{1}{2} - z$.

Since lattice parameters of cobalt(III) nitroammine complexes are known to vary slightly from crystal to crystal of the same compound, comparative studies at the two temperatures were carried out using the same crystal without removing the crystal from the diffractometer. All experiments were carried out in the dark to prevent possible photochemical linkage isomerization. The temperature was maintained and controlled using a Cryosystem (Oxford Cryosystems) openflow gas cryostat (Cosier & Glazer, 1986).

In order to improve the statistics, the reflections were deliberately collected in a reciprocal volume double the minimum required by crystal symmetry, and equivalent reflections were merged.

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1989); software used to prepare material for publication: SHELXL93.

The study was carried out at the Chemistry Department (Crystallography Group) of Durham University, where EB and JK were spending some research time as guests of JAKH. The authors gratefully acknowledge financial support from the Royal Society (EB), the Academy of Finland and the British Council (JK).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SK1068). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Boldyreva, E. V., Kivikoski, J. & Howard, J. A. K. (1997). Acta Cryst. B53. In the press.
- Börtin, O. (1968). Acta Chem. Scand. 22, 2890-2898.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cotton, F. A. & Edwards, W. T. (1968). Acta Cryst. B24, 474-477.
- Kubota, M. & Ohba, S. (1992). Acta Cryst. B48, 627-632.
- Mäueler, G. (1981). Prax. Naturwiss. Chem. Köln, 3, 81-86.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1989). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

group at the two temperatures was shown to be *Pnam*, not $Pna2_1$ as reported previously. Large anisotropic structural distortion was observed on cooling, but the space group and the general structural pattern remain the same.

Comment

A comparative study of the structure of the title compound at 290 K and 150 K was part of a project studying the anisotropy of structural distortion of cobalt(III) nitroammine complexes induced by various means: cooling, increasing pressure, isomorphous substitution or homogeneous linkage isomerization. This paper reports the structural data for the title compound at 290 K and 150 K, and the details of the data collection and data

refinement procedures. A detailed comparison of the structures, the analysis of the anisotropy of structural distortion on cooling and its comparison with structural strain resulting from an increase in hydrostatic pressure or linkage isomerization is reported elsewhere (Boldyreva, Kivikoski & Howard, 1997).

Acta Cryst. (1997). C53, 526-528

Pentaamminenitrocobalt(III) Chloride Nitrate at 290 K and 150 K

ELENA V. BOLDYREVA,^a JUSSI KIVIKOSKI^b and J. A. K. Howard^b

^aInstitute of Solid State Chemistry, Russian Academy of Sciences, Kutateladze 18, Novosibirsk 128, 630128 Russia, and ^bDepartment of Chemistry, Durham University, Science Laboratories, South Road, DH1 3LE Durham, England. E-mail: elena@solid.nsk.su

(Received 18 October 1996; accepted 13 November 1996)

Abstract

The structure of the title compound, $[Co(NO_2)(NH_3)_5]$ -Cl(NO₃), was determined at 290 K and 150 K using the same crystal. The general structural pattern was shown to be similar to that previously reported by Podberezskaya, Virovets & Boldyreva [*Russ. J. Struct. Chem.* (1991), **32**, 89–95] for 290 K, but the space

Fig. 1. A view of the $[Co(NO_2)(NH_3)_5]^{2+}$ cation and the $(NO_3)^$ anion at 150 K showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level for the non-H atoms; H atoms are drawn as small circles of arbitrary radii.

Acta Crystallographica Section C ISSN 0108-2701 © 1997